Требования к моделям в моделировании

Требования к моделям в моделировании

Моделирование можно рассматривать как замещение исследуемого объекта (оригинала) его условным образом, описанием или другим объектом, именуемым моделью и обеспечивающим близкое к оригиналу поведение в рамках некоторых допущений и приемлемых погрешностей. Моделирование обычно выполняется с целью познания свойств оригинала путем исследования его модели, а не самого объекта. Разумеется, моделирование оправдано в том случае когда оно проще создания самого оригинала или когда последний по каким-то причинам лучше вообще не создавать.

Под моделью понимается физический или абстрактный объект, свойства которого в определенном смысле сходны со свойствами исследуемого объекта. При этом требования к модели определяются решаемой задачей и имеющимися средствами [19]. Существует ряд общих требований к моделям:

  1. Адекватность – достаточно точное отображение свойств объекта;
  2. Полнота – предоставление получателю всей необходимой информации об объекте;
  3. Гибкость – возможность воспроизведения различных ситуаций во всем диапазоне изменения условий и параметров;
  4. Трудоемкость разработки должна быть приемлемой для имеющегося времени и программных средств.

Моделирование – это процесс построения модели объекта и исследования его свойств путем исследования модели.

Таким образом, моделирование предполагает 2 основных этапа:

  1. Разработка модели;
  2. Исследование модели и получение выводов.

При этом на каждом из этапов решаются разные задачи и используются отличающиеся по сути методы и средства.

На практике применяют различные методы моделирования. В зависимости от способа реализации, все модели можно разделить на два больших класса: физические и математические.

Математическое моделирование принято рассматривать как средство исследования процессов или явлений с помощью их математических моделей.

Под физическим моделированием понимается исследование объектов и явлений на физических моделях, когда изучаемый процесс воспроизводят с сохранением его физической природы или используют другое физическое явление, аналогичное изучаемому [10, 41]. При этом физические модели предполагают, как правило, реальное воплощение тех физических свойств оригинала, которые являются существенными в конкретной ситуации. Например, при проектировании нового самолета создается его макет, обладающий теми же аэродинамическими свойствами; при планировании застройки архитекторы изготавливают макет, отражающий пространственное расположение ее элементов. В связи с этим физическое моделирование называют также макетированием [10].

Полунатурное моделирование представляет собой исследование управляемых систем на моделирующих комплексах с включением в состав модели реальной аппаратуры [41]. Наряду с реальной аппаратурой в замкнутую модель входят имитаторы воздействий и помех, математические модели внешней среды и процессов, для которых неизвестно достаточно точное математическое описание. Включение реальной аппаратуры или реальных систем в контур моделирования сложных процессов позволяет уменьшить априорную неопределенность и исследовать процессы, для которых нет точного математического описания. С помощью полунатурного моделирования исследования выполняются с учетом малых постоянных времени и нелинейностей, присущих реальной аппаратуре. При исследовании моделей с включением реальной аппаратуры используется понятие динамического моделирования, при исследовании сложных систем и явлений — эволюционного, имитационного и кибернетического моделирования [10, 18, 41].

Очевидно, действительная польза от моделирования может быть получена только при соблюдении двух условий:

  1. Модель обеспечивает корректное (адекватное) отображение свойств оригинала, существенных с точки зрения исследуемой операции;
  2. Модель позволяет устранить перечисленные выше проблемы, присущие проведению исследований на реальных объектах.

Понятия модели и моделирования

Слово «модель» произошло от латинского слова «mo dulus », означает «мера», «образец». Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью. Например, перед строительством здания, сооружения делали его уменьшенную копию для обсуждения, улучшения, утверждения проекта.

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ век. Однако методология моделирования долгое время развивалась отдельными науками независимо друг от друга. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин «модель» широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. В этом разделе мы будем рассматривать только такие модели, которые являются инструментами получения знаний.

Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом, и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

В самом общем случае при построении модели исследователь отбрасывает те характеристики, параметры объекта-оригинала, которые несущественны для изучения объекта. Выбор характеристик объекта-оригинала, которые при этом сохраняются и войдут в модель, определяется целями моделирования. Обычно такой процесс абстрагирования от несущественных параметров объекта называют формализацией. Более точно,

Основное требование, предъявляемое к моделям – это их адекватность реальным процессам или объектам, которые замещает модель.

Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим (а иногда и единственным) способом их изучения часто является построение и исследование модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность. Многовековой опыт развития науки доказал на практике плодотворность такого подхода. Более конкретно, необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует слишком много времени и средств.

В моделировании есть два различных подхода. Это натурное и абстрактное моделирование.

Понятия модели и моделирования

Слово «модель» произошло от латинского слова «mo dulus », означает «мера», «образец». Его первоначальное значение было связано со строительным искусством, и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью. Например, перед строительством здания, сооружения делали его уменьшенную копию для обсуждения, улучшения, утверждения проекта.

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ век. Однако методология моделирования долгое время развивалась отдельными науками независимо друг от друга. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин «модель» широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. В этом разделе мы будем рассматривать только такие модели, которые являются инструментами получения знаний.

Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом, и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

В самом общем случае при построении модели исследователь отбрасывает те характеристики, параметры объекта-оригинала, которые несущественны для изучения объекта. Выбор характеристик объекта-оригинала, которые при этом сохраняются и войдут в модель, определяется целями моделирования. Обычно такой процесс абстрагирования от несущественных параметров объекта называют формализацией. Более точно,

Основное требование, предъявляемое к моделям – это их адекватность реальным процессам или объектам, которые замещает модель.

Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим (а иногда и единственным) способом их изучения часто является построение и исследование модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность. Многовековой опыт развития науки доказал на практике плодотворность такого подхода. Более конкретно, необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует слишком много времени и средств.

В моделировании есть два различных подхода. Это натурное и абстрактное моделирование.

Тема: «Модели и моделирование»

Тема: «Модели и моделирование».
Цели:

  • познакомить с различными видами моделей и моделированием;
  • развивать умения выполнять различного вида задания в графическом редакторе «Гну пеинт», используя специальную сетку:
  • воспитывать бережное отношение к сложным аппаратным средствам.

1. Оргмомент. Постановка цели урока

– Ребята, сегодня на уроке мы с вами поговорим о моделях и моделировании. Откройте свои тетради, запишите сегодняшнее число и тему урока: «Модели и моделирование».

2. Работа над новым материалом

Модель – это упрощённое подобие предмета или процесса. Она повторяет какие-то свойства оригинала и заменяет его в некоторых случаях.

Например, кукла – модель человека. Девочка может заботиться о ней, укладывать спать, одевать её. Кукла-модель выполняет в игре роль человека.
У одного предмета могут быть разные модели.

Например, модель-рыбы – блесна в форме рыбки или бумажная рыбка – оригами. Это материальная модель.
Итак, что же такое модель? Модель – это упрощённое подобие предмета или процесса. Записываем это определение в своих тетрадях.

Модели бывают материальными и информационными. Именно информационные модели представляют наибольший интерес для информатики. Информационная модель объекта – это его описание. Описание может быть словесным, математическим или графическим.

Итак, модели бывают материальными и информационными. Информационные модели делятся на словесные, графические и математические.
Запишите эту схему в свои тетрадочки.

Например, чертёж автомобиля – это его графическая модель. Самая простая информационная модель человека – это его имя.

Пример словесных моделей – загадки, отражающие характерные признаки предмета.

2. Чёрный Ивашка,
Деревянная рубашка,
Где носом пройдёт –
Там заметку кладёт. (Карандаш)

3. Семь ребят по лесенке
Заиграли песенки. (Ноты)

– Молодцы, назовите характерные признаки следующих предметов:

  • автомобиль (4 колеса, кузов, мотор);
  • часы (циферблат, стрелки);
  • цветок (стебель, листочки);

– Математические модели ты строишь на уроках математики.

– Что же такое моделирование?

Моделирование – процесс создания модели предмета. Запишем это определение.

– Давайте закрепим нами полученные знания и посмотрим видеоролик о моделях и моделировании.
– Что такое модель?
– Какие бывают модели?
– Что такое моделирование?

– Сегодня на уроке мы попробуем создать модель – ковра, с узором характерным для башкирских ковров. Башкирский орнамент почти всегда симметричен. Центральное место в композициях порой занимает символический ромб. Ромб (символ земли – пашни).

Смотрите так же:  Образец претензии на возврат денег за телефон евросеть

– Сегодня на уроке вы по предложенному мной эскизу создадите компьютерную модель ковра. Вы знаете, что сначала художник воплощает все свои задумки на бумаге, далее он создаёт информационную модель с помощью компьютера, есть специальные станки, которым эту информационную модель можно передать. Эти станки называются – станки с ЧПУ(числовым программным управлением). Давайте создадим модель для такого станка. Для этого мы используем программу «Гну Пеинт» со специальной разметкой.

Во время выполнения работы делается перерыв, на котором выполняется комплекс упражнений для глаз:

1. Закрыть глаза, сильно напрягая глазные мышцы, на счет 1–4, затем раскрыть глаза, расслабить мышцы глаз, посмотреть вдаль на счет 1–6. Повторить 4–5 раз.
2. Посмотреть на переносицу и задержать взор на счет 1–4. До усталости глаза не доводить. Затем открыть глаза, посмотреть вдаль на счет 1–6. Повторить 4–5 раз.
3. Не поворачивая головы, посмотреть направо и зафиксировать взгляд на счет 1–4, затем посмотреть вдаль прямо на счет 1–6. Аналогичным образом проводятся упражнения, но с фиксацией взгляда влево, вверх и вниз. Повторить 3–4 раза.
4. Перевести взгляд быстро по диагонали: направо вверх — налево вниз, потом прямо вдоль на счет 1–6; затем налево вверх — направо вниз и посмотреть вдаль на счет 1–6. Повторить 4–5 раз.

3. Проверка выполнения работы. Оценивание

4. Подведение итога

– Вот и созданы наши модели. Давайте посмотрим у всех ли они получились.
– Спасибо за урок!

Литература.

Программно-методический комплекс «МИР ИНФОРМАТИКИ» 3-4 год обучения. (Разработан издательством «Учебная книга» (г. Екатеринбург) по заказу министерства образования Свердловской области).

Принципы моделирования и основные требования, предъявляемые к моделям

Моделирование может осуществляться с двумя главными целями:

— для изучения механизма явлений;

— для управления объектом, т. е. для выработки по модели оптимальных управляемых воздействий.

В обоих случаях модель создается для определения и прогноза интересующих характеристик объекта.

Моделирование базируется на нескольких основополагающих принципах. Рассмотрим их.

Принцип информационной достаточности.

При полном отсутствии информации об исследуемом объекте построение его модели невозможно. С другой стороны, при наличии полной информации об объекте построение его модели не имеет смысла. Существует некоторый уровень априорной информации об объекте, при достижении которой может быть построена его адекватная модель.

Создаваемая модель должна обеспечивать достижение поставленной цели исследования с вероятностью, существенно отличающейся от нуля.

Принцип множественности моделей.

Данный принцип является ключевым. Речь идет о том, что создаваемая модель должна отражать в первую очередь те свойства реальной системы, которые интересуют исследователя. Соответственно при использовании любой конкретной модели, познаются лишь некоторые стороны реальности. Для более полного ее исследования необходим ряд моделей, позволяющий с разных сторон и с разной степенью детализации рассмотреть исследуемый объект.

В большинстве случаев сложную систему можно представить состоящей из агрегатов (подсистем), для адекватного математического описания которых оказываются пригодными некоторые стандартные математические схемы.

Основными требованиями, предъявляемыми к моделям, являются адекватность, точность, простота, открытость, совместимость, экономичность, надежность.

Адекватность математической модели можно определить как соответствие модели моделируемому объекту или процессу. Модель считается адекватной, если она отражает заданные свойства объекта с приемлемой точностью. Точность определяется как степень совпадения выходных параметров реального объекта или результатов экспериментальных измерений с результатами моделирования. Адекватность математической модели можно определить так же, как способность отображать заданные свойства объекта проектирования с погрешностью не выше заданной.

Наличие погрешности компьютерного моделирования обусловлено рядом причин. Перечислим основные источники погрешности.

1. Математическая модель является лишь приближенным описанием реального процесса (погрешность модели).

2. Исходные данные, как правило, содержат погрешности, так как-либо являются результатами экспериментов (измерений), или решениями вспомогательных задач (погрешность данных).

3. Применяемые для решения задачи методы в большинстве случаев являются приближенными (погрешность метода).

4. При вводе исходных данных в ЭВМ, выполнении операций производятся округления (вычислительная погрешность).

Погрешности 1 и 2 – неустранимые на данном этапе решения, для их уменьшения приходится возвращаться вновь к построению математической, а и иногда и концептуальной модели, проводить дополнительное экспериментальное уточнение условий задачи.

При моделировании целесообразно ориентироваться на применение математических моделей стандартного вида, которые имеют хорошо проработанное программное обеспечение.

Важными требованиями для математических и в особенности для компьютерных моделей является открытость архитектуры и совместимость с другими моделями аналогичного назначения с точки зрения обеспечения возможности обмена данными и результатами моделирования. Открытая архитектура компьютерной модели предусматривает возможность дальнейшего развития и адаптации модели пользователем для своих конкретных условий и требований, подключение к основной модели модулей собственной разработки, решающих более узкие или новые задачи, возникшие в процессе дальнейшего развития технологических систем.

Совместимость форматов входных и выходных данных компьютерных моделей аналогичного или связанного назначения позволяет использовать для моделирования результаты работ, выполненных с помощью других моделей, упростить структуру модели и удешевить стоимость разработки.

Экономичность математической модели обычно характеризуют затратами вычислительных ресурсов ЭВМ при их реализации, надежность — обеспечением с течением времени требуемой точности и повторяемости результатов моделирования.

Выполнить все перечисленные требования к модели практически не представляется возможным, так как они чаще всего противоречивы, например, высокая точность модели и ее предельная простота. Поэтому разработка математических и компьютерных моделей осуществляется на основе компромиссных решений, исходя из поставленных приоритетов.

185.238.139.36 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Лекция 01.
Понятие моделирования.
Способы представления моделей

Модель — аналог, прототип, шаблон, образец, используемый вместо оригинала для решения задач (получения ответов на вопросы). Модель строится на основании ограниченного множества известных нам данных (свойств, поведений) об оригинале. Построение моделей и использование моделей (решение на них задач) производится с целью:

  • получения неизвестных ранее данных, предсказания новых свойств и будущих поведений,
  • извлечения пользы при реализации решений,
  • систематизации (обобщения) известных данных.

Моделирование – способ, процесс замещения оригинала его аналогом (моделью) с последующим изучением свойств и поведения оригинала на модели.

Процесс моделирования состоит из:

  • формализации (проектирование и настройка модели, систем моделей и моделей систем),
  • собственно моделирования (постановка различных задач и решение их на модели),
  • интерпретации результатов моделирования, комплексирования с уже имеющимися реальными системами.

Модель вместо исходного объекта используется в случаях, когда эксперимент опасен, дорог, происходит в неудобном масштабе пространства и времени (долговременен, слишком кратковременен, протяжен ), невозможен, неповторим, ненагляден и т. д. Проиллюстрируем это:

  • «эксперимент опасен» — при деятельности в агрессивной среде вместо человека лучше использовать его макет; примером может служить луноход;
  • «дорог» — прежде чем использовать идею в реальной экономике страны, лучше опробовать её на математической или имитационной модели экономики, просчитав на ней все «за» и «против» и получив представление о возможных последствиях;
  • «долговременен» — изучить коррозию — процесс, происходящий десятилетия, — выгоднее и быстрее на модели;
  • «кратковременен» — изучать детали протекания процесса обработки металлов взрывом лучше на модели, поскольку такой процесс скоротечен во времени;
  • «протяжен в пространстве» — для изучения космогонических процессов удобны математические модели, поскольку реальные полёты к звёздам (пока) невозможны;
  • «микроскопичен» — для изучения взаимодействия атомов удобно воспользоваться их моделью;
  • «невозможен» — часто человек имеет дело с ситуацией, когда объекта нет, он ещё только проектируется. При проектировании важно не только представить себе будущий объект, но и испытать его виртуальный аналог до того, как дефекты проектирования проявятся в оригинале. Важно: моделирование теснейшим образом связано с проектированием. Обычно сначала проектируют систему, потом её испытывают, потом снова корректируют проект и снова испытывают, и так до тех пор, пока проект не станет удовлетворять предъявляемым к нему требованиям. Процесс «проектирование-моделирование» цикличен. При этом цикл имеет вид спирали — с каждым повтором проект становится все лучше, так как модель становится все более детальной, а уровень описания точнее;
  • «неповторим» — это достаточно редкий случай, когда эксперимент повторить нельзя; в такой ситуации модель — единственный способ изучения таких явлений. Пример — исторические процессы, — ведь повернуть историю вспять невозможно;
  • «ненагляден» — модель позволяет заглянуть в детали процесса, в его промежуточные стадии; при построении модели исследователь как бы вынужден описать причинно-следственные связи, позволяющие понять все в единстве, системе. Построение модели дисциплинирует мышление. Важно: модель играет системообразующую и смыслообразующую роль в научном познании, позволяет понять явление, структуру изучаемого объекта. Не построив модель, вряд ли удастся понять логику действия системы. Это означает, что модель позволяет разложить систему на элементы, связи, механизмы, требует объяснить действие системы, определить причины явлений, характер взаимодействия составляющих.

Процесс моделирования есть процесс перехода из реальной области в виртуальную (модельную) посредством формализации , далее происходит изучение модели (собственно моделирование ) и, наконец, интерпретация результатов как обратный переход из виртуальной области в реальную. Этот путь заменяет прямое исследование объекта в реальной области, то есть лобовое или интуитивное решение задачи. Итак, в самом простом случае технология моделирования подразумевает 3 этапа: формализация , собственно моделирование , интерпретация ( рис. 1.1 ).

Свойства моделей и требования к ним

Дата добавления: 2013-12-23 ; просмотров: 10011 ; Нарушение авторских прав

Классификация моделей

Проблема классификации моделей, как и любых достаточно сложных явлений и процессов, сложна и многогранна. Объективная причина этого состоит в том, что исследователя интересует лишь какое-то одно свойство (или несколько свойств) системы (объекта, процесса, явления), для отображения которого и создана модель. Поэтому в основу классификации можно положить множество различных классификационных признаков: способ описания, функциональное назначение, степень детализации, структурные свойства, область применения и т.д.

Рассмотрим некоторые наиболее часто используемые классы (виды) моделей (табл.1.4.1).

Материальные (физические, реальные) модели – модели, построенные средствами материального мира для отражения его объектов, процессов.

Идеальные (воображаемые) модели – модели, построенные средствами мышления на базе нашего сознания.

Информационные (абстрактные, теоретические) модели – модели, построенные на одном из языков (знаковых систем) кодирования информации.

Материальные модели представляют собой реальные, вещественные конструкции, служащие для замены оригинала в определенном отношении. Основным требованием к построению данного класса моделей является тре-бование сходства (подобия, аналогии) между моделью и оригиналом. Различают несколько типов подобия – геометрическое, физическое, аналогию и др.

Геометрическое подобие является основным требованием к построению геометрических моделей, которые представляют собой объект, геометрически подобный своему прототипу и служащий для демонстрационных целей. Две геометрические фигуры подобны, если отношение всех соответствующих длин и углов одинаковы. Если известен коэффициент подобия – масштаб, то простым умножением размеров одной фигуры на величину масштаба определяются размеры другой фигуры. В общем случае такая модель демонстрирует принцип действия, взаимное расположение частей, процесс сборки и разборки, компоновку объекта и предназначена для изучения свойств, которые инвариантны (независимы) от абсолютных величин линейных размеров объекта. Примерами геометрических моделей являются: макеты машин, манекены, скульптуры, протезы, глобусы и т.д. Они изображают прототип не во всем многообразии его свойств, не в любых качественных границах, а в границах чисто пространственных. Здесь имеет место сходство (подобие) не вообще между вещами, а между особыми типами вещей – телами. В этом ограниченность данного класса моделей. Отметим, что здесь реализуется прямое подобие.

Смотрите так же:  Судебная практика после смерти супруга

Физическое подобие относится к модели и оригиналу одинаковой физической природы и отражает их сходство в одинаковости отношений одноименных физических переменных в соответствующих пространственно-временных точках. Два явления физически подобны, если по заданным характеристикам одного можно получить характеристики другого простым пересчетом, который аналогичен переходу от одной системы единиц измерения к другой. Геометрическое подобие является частным случаем физического подобия. При физическом подобии модель и оригинал могут находиться в более сложных геометрических отношениях, чем линейная пропорциональность, так как физические свойства оригинала не пропорциональны его геометрическим размерам. Здесь важно, чтобы пространство физических переменных модели было подобно пространству физических переменных оригинала. При этом физическая модель по отношению к оригиналу является аналогией типа изоморфизма (взаимно однозначного соответствия). Центральной проблемой является проблема корректного пересчета результатов модельного эксперимента на результаты испытания оригинала в реальных условиях. Сходство основано на соблюдении некоторых физических критериев.

Идеальные (воображаемые) модели – это идеальные конструкции в нашем сознании в виде образов или представлений о тех или иных физических явлениях, процессах, объектах, системах (геометрическая точка, бесконечность и т.д.).

Абстрактные (теоретические, информационные) модели – модели, представляющие объекты моделирования в образной или знаковой форме.

Примерами абстрактных моделей могут служить какая-либо гипотеза 1 о свойствах материи, предположения о поведении сложной системы в условиях неопределенности или новая теория о строении сложных систем.

На абстрактных моделях и на умозрительной аналогии (сходстве) между моделью Ми оригиналом Sстроится абстрактное (теоретическое) моде-лирование.

Ярким представителем абстрактного и знакового моделирования является математическая модель.

Математическая модель это совокупность математических формул, уравнений, соотношений, описывающая интересующие исследователя свойства объекта моделирования.

Для исследования каждого аспекта моделирования (вид, структура, поведение) или их комбинации могут использоваться соответствующие модели: модели внешнего вида, модели структуры, модели поведения.

Модель внешнего вида чаще всего сводится к перечислению внешних признаков объекта моделирования и предназначена для идентификации (распознавания) объекта.

Модель структуры представляет собой перечень составных элементов объекта моделирования с указанием связей между этими элементами и предназначена для наглядного отображения, изучения свойств, выявления значимых связей, исследования стабильности объекта моделирования.

Модель поведения представляет собой описание изменений внешнего вида и структуры объекта моделирования с течением времени и в результате взаимодействия с другими объектами. Назначение моделей поведения – прогнозирование будущих состояний объекта моделирования, управление объектов, установление связей с другими объектами, внешними по отношению к объекту моделирования.

Объективно уровни наших представлений, уровни наших знаний о различных явлениях, процессах, системах различны. Это отражается в способах представления рассматриваемых явлений.

К неформализованным моделям можно отнести отображения (образы), полученные с использованием различных форм мышления: эмоции, интуиции, образного мышления, подсознания, эвристики как совокупности логических приемов и правил отыскания истины. При неформализованном моделировании модель не формулируется, а вместо нее используется некоторое нечеткое мысленное отражение (образ) реальности, служащее основой для принятия решения.

Примером неопределенных (интуитивных) представлений об объекте может служить нечеткое описание ситуации, основанное на опыте и на ин-туиции.

К формализованным моделям можно отнести образные модели, когда модели строятся из каких-либо наглядных элементов (упругие шары, потоки жидкости, траектории движения тел и т.д.).

К формализуемым абстрактным моделям относятся знаковые модели, в том числе математические конструкции, языки программирования, естест-венные языки вместе с правилами их преобразования и интерпретации.

По своему назначению модели призваны решать множество задач:

исследовательские (дескрипторные, когнитивные, концептуальные, формальные) модели предназначены для генерации знаний путем изучения свойств объекта;

учебные модели предназначены для передачи знаний об изучаемом объекте;

рабочие (оптимизационные, управленческие) модели предназначены для генерации правильных действий в процессе достижения цели.

К исследовательским моделям относятся полунатурные стенды, физические модели, математические модели. Отметим, что исследова-тельские модели могут выступать в качестве учебных, если они пред-назначены для передачи знаний о свойствах объекта. Примерами рабочих моделей могут служить: робот; автопилот; математическая модель объекта, встроенная в систему управления или контроля; искусственное сердце и т.д. При этом исследовательские и учебные модели должны приближаться к реальности, а рабочие модели должны отражать эту реальность. Четкой границы между этими моделями не существует. Так, например, исследовательская модель, адекватно отражающая свойства объекта, может быть использована в качестве рабочей.

Исследовательские модели являются носителями новых знаний, учебные модели соединяют старые знания с новыми.

Рабочие модели идеализируют накопленные знания в форме идеальных действий по выполнению тех или иных функций, которые желательно было бы осуществить.

Дескрипторные модели – описательные модели, предназначены для установления законов изменения параметров этих процессов и являются реализациями описательных и объяснительных содержательных моделей на формальном уровне моделирования.

В качестве примера такой модели можно привести модель движения материальной точки под действием приложенных сил, использующую второй закон Ньютона. Задавая положение и скорость точки в начальный момент времени (входные величины), массу точки (параметр модели) и закон изменения прикладываемых сил (внешние воздействия), можно определить скорость и координаты точки в любой последующий момент времени (выходные величины).

Когнитивные (мысленные, познавательные) модели – модели, представляющие собой некий мысленный образ объекта, его идеальная модель в голове исследователя, полученная в результате наблюдения за объектом-оригиналом.

Формируя такую модель, исследователь, как правило, стремится ответить на конкретные вопросы, поэтому от бесконечно сложного устройства объекта отсекается все ненужное с целью получения его более компактного и лаконичного описания.

Когнитивные модели субъективны, так как формируются умозрительно на основе всех предыдущих знаний и опыта исследователя. Получить представление о когнитивной модели можно только описав ее в знаковой форме. Представление когнитивной модели на естественном языке на-зывается содержательной моделью.

Когнитивные и содержательные модели не эквивалентны, поскольку первые могут содержать элементы, которые исследователь не сможет или не хочет сформулировать.

Концептуальной моделью принято называть содержательную модель, при формулировке которой используются понятия и представления предметных областей знания, занимающихся изучением объекта моделирования.

В более широком смысле под концептуальной моделью понимают содержательную модель, базирующуюся на определенной концепции или точке зрения.

Формальная модель является представлением концептуальной модели с помощью одного или нескольких формальных языков (например, языков математических теорий, универсального языка моделирования или алгоритмических языков).

В гуманитарных науках процесс моделирования во многих случаях заканчивается созданием концептуальной модели объекта.

В естественно-научных и технических дисциплинах, как правило, удается построить формальную модель.

Таким образом, когнитивные, содержательные и формальные модели составляют три взаимосвязанных уровня моделирования.

Оптимизационные модели – модели, предназначенные для определения оптимальных (наилучших) с точки зрения некоторого критерия параметров моделируемого объекта или же для поиска оптимального (наилучшего) режима управления некоторым процессом.

Как правило, такие модели строятся с использованием одной или нескольких дескриптивных моделей и включают некоторый критерий, позволяющий сравнивать различные варианты наборов значений выходных величин между собой с целью выбора наилучшего. На область значений входных параметров могут быть наложены ограничения в виде равенств и неравенств, связанные с особенностями рассматриваемого объекта или процесса.

Примером оптимизационной модели может служить моделирование процесса запуска ракеты с поверхности Земли с целью подъема ее на заданную высоту за минимальное время при ограничениях на величину импульса двигателя, время его работы, начальную и конечную массу ракеты. Математические соотношения дескриптивной модели движения ракеты выступают в данном случае в виде ограничений типа равенств.

Отметим, что для большинства реальных процессов, конструкций требуется определение оптимальных параметров сразу по нескольким критериям, т.е. мы имеем дело с так называемыми многокритериальными задачами оптимизации.

Управленческие модели – модели, используемые для принятия эффективных управленческих решений в различных областях целенаправленной деятельности человека.

В общем случае принятие решений является процессом, по своей сложности сравнимым с процессом мышления в целом. Однако на практике под принятием решений обычно понимается выбор некоторых альтернатив из заданного их множества, а общий процесс принятия решений представляется как последовательность таких выборов альтернатив.

В отличие от оптимизационных моделей, где критерий выбора считается определенным и искомое решение устанавливается из условий его экстремальности, в управленческих моделях необходимо введение специфических критериев оптимальности, которые позволяют сравнивать альтернативы при различных неопределенностях задачи. Вид критерия оптимальности в управленческих моделях заранее не фиксируется. Именно в этом состоит основная особенность данных моделей.

Регистрирующие модели представляют собой модели, предназначенные для регистрации интересующих исследователя свойств и качеств, недоступных для непосредственной регистрации на объекте моделирования.

При решении задач управления сложными динамическими объектами используются эталонные и прогностические модели, которые представляют собой формализованное отображение желаемых характеристик объекта управления для целей текущего или будущего управления объектом.

Эталонная модель – это модель, описывающая в той или иной форме желаемые (идеализированные) свойства объекта моделирования (управления).

Прогностические модели – модели, предназначенные для определения будущих состояний (будущего поведения) объекта моделирования.

Имитационные модели – это совокупность описания элементов системы, взаимосвязей элементов друг с другом, внешних воздействий, алгоритмов функционирования системы (или правил изменения состояний) под влиянием внешних и внутренних возмущений.

Имитационные модели создаются и используются тогда, когда создание единой модели сложной системы невозможно или сопряжено с очень большими трудностями, имеющиеся математические методы не позволяют получить удовлетворительных аналитических или численных решений рассматриваемых задач. Но наличие описаний элементов и алгоритмов функционирования позволяет имитировать процесс функционирования системы и производить измерения интересующих характеристик.

Можно также отметить, что имитационные модели могут быть созданы для гораздо более широкого класса объектов и процессов, чем аналитические и численные модели. Кроме того, поскольку для реализации используются, как правило, вычислительные средства (компьютеры и другие средства) средствами формализованного описания имитационных моделей служат универсальные или специальные алгоритмические языки.

Имитационное моделирование при изучении больших (сложных) систем

остается практически единственно доступным методом получения информации о поведении системы в условиях неопределенности, что особенно важно на этапе ее проектирования. Данным методом можно выбирать структуру, параметры и алгоритмы управления синтезируемой системы, оценивать их эффективность, а также имитировать поведение системы в условиях, которые невозможно воспроизвести на реальном прототипе (например, аварии, отказы, чрезвычайные ситуации и т.д.). Когда при имитационном моделировании изучают поведение системы при действии случайных факторов с последующей статистической обработкой инфор-мации, то целесообразно в качестве метода машинной реализации имитационной модели использовать метод статического моделирования. При этом метод статистических испытаний (метод Монте-Карло) рассматривается как численный метод решения аналитических задач.

Смотрите так же:  Дети возврат товара

Особый класс моделей составляют кибернетические модели, которые отражают управленческие аспекты поведения сложных систем на основе информационного обмена между ее элементами. Сама физическая природа кибернетических моделей отличается от физической природы прототипа и ее элементов. Особенностью кибернетических моделей является возможное наличие в них, кроме механизма управления, также и механизмов самоорганизации, обучения, адаптации и т.д., а в более сложных системах – и искусственного интеллекта.

Учет фактора времени при моделировании приводит использованию статических и динамических моделей.

Статические модели отражают установившиеся (равновесные) режимы работы системы;

Статические режимы работы элементов, объектов, систем отражены в их статических характеристиках (линейных, нелинейных) и описываются соответствующими алгебраическими функциональными зависимостями.

Динамические модели отражают неустановившиеся (неравновесные, переходные) режимы работы системы.

Для описания неравновесных (переходных) режимов работы системы чаще всего используются дифференциальные уравнения или системы дифференциальных уравнений.

Рассмотрим некоторые свойства моделей, которые позволяют в той или иной степени либо различать, либо отождествлять модель с оригиналом (объектом, процессом). Принято выделять следующие свойства моделей: адекватность, сложность, конечность, истинность, приближенность.

Адекватность. Под адекватностью модели принято понимать правильное качественное и количественное описание объекта (процесса) по выбранному множеству характеристик с некоторой разумной степенью точности.

Адекватность является важнейшим требованием к модели, она требует соответствия модели ее реальному объекту (процессу, системе и т.д.) относительно выбранного множества его свойств и характеристик. При этом имеется в виду адекватность не вообще, а адекватность по тем свойствам модели, которые являются для исследователя существенными. Полная адекватность означает тождество между моделью и прототипом.

Математическая модель может быть адекватна относительно одного класса ситуаций (состояние системы + состояние внешней среды) и не адекватна относительно другого. Применение неадекватной модели может привести либо к существенному искажению реального процесса или свойств (характеристик) изучаемого объекта, либо к изучению несуществующих явлений, свойств и характеристик.

Можно ввести понятие степени адекватности, которая будет меняться от 0 (отсутствие адекватности) до 1 (полная адекватность). Степень адекватности характеризует долю истинности модели относительно выбранной характеристики (свойства) изучаемого объекта. Отметим, что в некоторых простых ситуациях численная оценка степени адекватности не представляет особой трудности. Трудность оценки степени адекватности в общем случае возникает из-за неоднозначности и нечеткости самих критериев адекватности, а также из-за трудности выбора тех признаков, свойств и характеристик, по которым оценивается адекватность.

Понятие адекватности является рациональным понятием, поэтому повышение ее степени также следует осуществлять на рациональном уровне. Адекватность модели должна проверяться, контролироваться, уточняться постоянно в процессе исследования на частных примерах, аналогиях, экспериментах и т.д. В результате проверки адекватности выясняют, к чему приводят сделанные допущения: то ли к допустимой потере точности, то ли к потере качества. При проверке адекватности также можно обосновать законность применения принятых рабочих гипотез при решении рассматриваемой задачи или проблемы.

Простота и сложность. Одновременное требование простоты и адекватности модели является противоречивым. С точки зрения адекватности сложные модели являются предпочтительнее простых. В сложных моделях можно учесть большее число факторов, влияющих на изучаемые характеристики объектов. Хотя сложные модели и более точно отражают моделируемые свойства оригинала, но они более громоздки, труднообозримы и неудобны в обращении. Поэтому исследователь стремится к упрощению модели, так как простыми моделями легче оперировать. При стремлении к построению простой модели должен соблюдаться основной принцип упрощения модели:

упрощать модель можно до тех пор, пока сохраняются основные свойства, характеристики и закономерности, присущие оригиналу.

Этот принцип указывает на предел упрощения.

При этом понятие простоты (или сложности) модели является понятием относительным. Модель считается достаточно простой, если современные средства исследования (математические, информационные, физические) дают возможность провести качественный и количественный анализ с требуемой точностью. А поскольку возможности средств исследований непрерывно растут, то те задачи, которые раньше считались сложными, теперь могут быть отнесены к категории простых.

Более трудной задачей является обеспечение простоты/сложности модели сложной системы, состоящей из отдельных подсистем, соединенных друг с другом в некоторую иерархическую и многосвязную структуру. При этом каждая подсистема и каждый уровень имеют свои локальные критерии сложности и адекватности, отличные от глобальных критериев системы.

С целью меньшей потери адекватности упрощение моделей целесообразнее проводить:

1) на физическом уровне с сохранением основных физических соотношений,

2) на структурном уровне с сохранением основных системных свойств.

Упрощение же моделей на математическом уровне может привести к существенной потере степени адекватности. Например, усечение характерис-тического уравнения высокого порядка до 2 – 3-го порядка может привести к совершенно неверным выводам о динамических свойствах системы.

Заметим, что более простые модели используются при решении задачи синтеза, а более сложные точные модели – при решении задачи анализа.

Конечность моделей. Известно, что мир бесконечен, как любой объект, не только в пространстве и во времени, но и в своей структуре (строении), свойствах, отношениях с другими объектами. Бесконечность проявляется в иерархическом строении систем различной физической природы. Однако при изучении объекта исследователь ограничивается конечным количеством его свойств, связей, используемых ресурсов и т.д. Он как бы «вырезает» из бесконечного мира некоторый конечный фрагмент в виде конкретного объекта, системы, процесса и т.д. и пытается познать бесконечный мир через конечную модель этого фрагмента.

Конечность моделей систем заключается, во-первых, в том, что они отображают оригинал в конечном числе отношений, т.е. с конечным числом связей с другими объектами, с конечной структурой и конечным количеством свойств на данном уровне изучения, исследования, описания, располагаемых ресурсов. Во-вторых, в том, что ресурсы (информационные, финансовые, энергетические, временные, технические и т.д.) моделирования и наши знания как интеллектуальные ресурсы конечны, а потому объективно ограничивают возможности моделирования и сам процесс познания мира через модели. Поэтому исследователь (за редким исключением) имеет дело с конечномерными моделями.

Выбор размерности модели (ее степени свободы, переменных состояния) тесно связан с классом решаемых задач. Увеличение размерности модели связано с проблемами сложности и адекватности. При этом необходимо знать, какова функциональная зависимость между степенью сложности и размерностью модели. Если эта зависимость степенная, то проблема может быть решена за счет применения вычислительных систем. Если же эта зависимость экспоненциальная, то «проклятие размерности» (Р. Калман 1 ) неизбежно и избавиться от него практически не удается.

Как отмечалось выше, увеличение размерности модели приводит к повышению степени адекватности и одновременно к усложнению модели. При этом степень сложности ограничена возможностью оперирования с моделью, т.е. теми средствами моделирования, которыми располагает исследователь. Необходимость перехода от грубой простой модели к более точной реализуется за счет увеличения размерности модели путем привлечения новых переменных, качественно отличающихся от основных и которыми пренебрегли при построении грубой модели. Эти переменные мо-гут быть отнесены к одному из следующих трех классов:

1) быстропротекающие переменные, протяженность которых во времени или в пространстве столь мала, что при грубом рассмотрении они принимались во внимание своими интегральными или осредненными характеристиками;

2) медленнопротекающие переменные, протяженность изменения которых столь велика, что в грубых моделях они считались постоянными;

3) малые переменные (малые параметры), значения и влияния которых на основные характеристики системы столь малы, что в грубых моделях они игнорировались.

Отметим, что разделение сложного движения системы по скорости на быстропротекающее и медленнопротекающее движения дает возможность изучать их в грубом приближении независимо друг от друга, что упрощает решение исходной задачи. Что касается малых переменных, то ими пренебрегают обычно при решении задачи синтеза, но стараются учесть их влияние на свойства системы при решении задачи анализа.

При моделировании стремятся по возможности выделить небольшое число основных факторов, влияние которых одного порядка и не слишком сложно описывается математически, а влияние других факторов оказывается возможным учесть с помощью осредненных, интегральных или «замороженных» характеристик.

Приближенность моделей. Из изложенного выше следует, что конечность и простота (упрощенность) модели характеризуют качественное различие (на структурном уровне) между оригиналом и моделью. Тогда приближенность модели будет характеризовать количественную сторону этого различия.

Можно ввести количественную меру приближенности путем сравнения, например, грубой модели с более точной эталонной (полной, идеальной) мо-делью или с реальной моделью. Приближенность модели к оригиналу неизбежна, существует объективно, так как модель как другой объект отражает лишь отдельные свойства оригинала. Поэтому степень приближенности (близости, точности) модели к оригиналу определяется постановкой задачи, целью моделирования.

Чрезмерное стремление к повышенной точности модели приводит к ее значительному усложнению, и, следовательно, к снижению ее практической ценности. Поэтому, видимо, справедлив принцип Л. Заде 1 о том, что при моделировании сложных (человеко-машинных, организационных) систем точность и практический смысл несовместимы и исключают друг друга. Причина противоречивости и несовместимости требований точности и практичности модели кроется в неопределенности и нечеткости знаний о самом оригинале – его поведении, его свойствах и характеристиках, о по-ведении окружающей среды, о механизмах формирования цели, путей и средствах ее достижения и т.д.

Истинность моделей. В каждой модели есть доля истины, т.е. любая модель в чем-то правильно отражает оригинал. Степень истинности модели выявляется только при практическом сравнении её с оригиналом, ибо только

практика является критерием истинности.

С одной стороны, в любой модели содержится безусловно истинное, т.е. определенно известное и правильное. С другой стороны, в модели содержится и условно истинное, т.е. верное лишь при определенных условиях. Типовая ошибка при моделировании заключается в том, что исследователи применяют те или иные модели без проверки условий их истинности, границ их применимости. Такой подход приводит заведомо к получению неверных результатов.

Отметим, что в любой модели также содержится предположительно-истинное (правдоподобное), т.е. нечто, могущее быть в условиях неопределенности либо верным, либо ложным. Только на практике устанавливается фактическое соотношение между истинным и ложным в конкретных условиях. Таким образом, при анализе уровня истинности модели необходимо выяснить:

1) точные, достоверные знания;

2) знания, достоверные при определенных условиях;

3) знания, оцениваемые с некоторой степенью неопределенности;

4) знания, не поддающиеся оценке даже с некоторой степенью неопределенности;

5) незнания, т.е. то, что неизвестно.

Таким образом, оценка истинности модели как формы знаний сводится к выявлению содержания в ней как объективных достоверных знаний, правильно отображающих оригинал, так и знаний, приближенно оценива-ющих оригинал, а также то, что составляет незнание.

108shagov.ru. Все права защищены. 2019